Uncertain convex programs: randomized solutions and confidence levels

نویسندگان

  • Giuseppe Carlo Calafiore
  • Marco C. Campi
چکیده

Many engineering problems can be cast as optimization problems subject to convex constraints that are parameterized by an uncertainty or 'instance' parameter. Two main approaches are generally available to tackle constrained optimization problems in presence of uncertainty: robust optimization and chance-constrained optimization. Robust optimization is a deterministic paradigm where one seeks a solution which simultaneously satisfies all possible constraint instances. In chance-constrained optimization a probability distribution is instead assumed on the uncertain parameters, and the constraints are enforced up to a pre-specified level of probability. Unfortunately however, both approaches lead to computationally intractable problem formulations. In this paper, we consider an alternative 'randomized' or 'scenario' approach for dealing with uncertainty in optimization, based on constraint sampling. In particular, we study the constrained optimization problem resulting by taking into account only a finite set of N constraints, chosen at random among the possible constraint instances of the uncertain problem. We show that the resulting randomized solution fails to satisfy only a small portion of the original constraints, provided that a sufficient number of samples is drawn. Our key result is to provide an efficient and explicit bound on the measure (probability or volume) of the original constraints that are possibly violated by the randomized solution. This volume rapidly decreases to zero as N is increased.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Exact Feasibility of Randomized Solutions of Uncertain Convex Programs

Many optimization problems are naturally delivered in an uncertain framework, and one would like to exercise prudence against the uncertainty elements present in the problem. In previous contributions, it has been shown that solutions to uncertain convex programs that bear a high probability to satisfy uncertain constraints can be obtained at low computational cost through constraints randomiza...

متن کامل

Characterizing Robust Solution Sets of Convex Programs under Data Uncertainty

This paper deals with convex optimization problems in the face of data uncertainty within the framework of robust optimization. It provides various properties and characterizations of the set of all robust optimal solutions of the problems. In particular, it provides generalizations of the constant subdifferential property as well as the constant Lagrangian property for solution sets of convex ...

متن کامل

Hypotheses Testing on the Optimal Values of Several Risk-neutral or Risk-averse Convex Stochastic Programs and Application to Hypotheses Testing on Several Risk Measure Values

Given an arbitrary number of risk-averse or risk-neutral convex stochastic programs, we study hypotheses testing problems aiming at comparing the optimal values of these stochastic programs on the basis of samples of the underlying random vectors. We propose non-asymptotic tests based on confidence intervals on the optimal values of the stochastic programs obtained using the Robust Stochastic A...

متن کامل

Worst-Case Violation of Sampled Convex Programs for Optimization with Uncertainty

Uncertain programs have been developed to deal with optimization problems including inexact data, i.e., uncertainty. A deterministic approach called robust optimization is commonly applied to solve these problems. Recently, Calafiore and Campi have proposed a randomized approach based on sampling of constraints, where the number of samples is determined so that only small portion of original co...

متن کامل

Particle Swarm Optimization for Hydraulic Analysis of Water Distribution Systems

The analysis of flow in water-distribution networks with several pumps by the Content Model may be turned into a non-convex optimization uncertain problem with multiple solutions. Newton-based methods such as GGA are not able to capture a global optimum in these situations. On the other hand, evolutionary methods designed to use the population of individuals may find a global solution even for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Program.

دوره 102  شماره 

صفحات  -

تاریخ انتشار 2005